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6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence
no guarantee that one can speak at all of the dimension of V. However, Theorem 6.4.1 will show
that any space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the
following basic lemma, of interest in itself, that gives a way to enlarge a given independent set of
vectors.

Lemma 6.4.1: Independent Lemma

Let {vy, v, ..., vx} be an independent set of vectors in a vector space V. If u €V but?
u¢ span{vy, v, ..., v}, then {u, vy, va, ..., vi} is also independent.

Proof. Let tu+tvy+6Hvy+ -+, vy = 0; we must show that all the coefficients are zero. First,

t =0 because, otherwise, u = —%‘vl — t%vz — = t;"vk is in span{vj, vp, ..., vV}, contrary to our
assumption. Hence t =0. But then tjv|+tHvy+ -+ vy = 0 so the rest of the ¢; are zero by the
independence of {vy, va, ..., vi}. This is what we wanted. ]
. Note that the converse of Lemma 6.4.1 is also true:
" if {u, vy, v, ..., vi} is independent, then u is not

in span{vy, va, ..., Vi}.

As an illustration, suppose that {vy, vy} is inde-
pendent in R3. Then v; and v, are not parallel, so
0 span{vj, vy} is a plane through the origin (shaded
y in the diagram). By Lemma 6.4.1, u is not in this

X ) . .
Spaéw’ v} plane if and only if {u, v, vy} is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called finite dimensional if it is spanned by a finite set of vectors.
Otherwise, V is called infinite dimensional.

Thus the zero vector space {0} is finite dimensional because {0} is a spanning set.

Let V be a finite dimensional vector space. If U is any subspace of V, then any independent
subset of U can be enlarged to a finite basis of U.

Proof. span I =U then I is already a basis of U. If span I # U, choose u; € U such that u; ¢ span I.
Hence the set /U{u;} is independent by Lemma 6.4.1. If span (IU{u;}) =U we are done; otherwise
choose u; € U such that up ¢ span (IU{u;}). Hence IU{uj, uy} is independent, and the process

5If X is a set, we write a € X to indicate that a is an element of the set X. If ¢ is not an element of X, we write
a¢X.
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continues. We claim that a basis of U will be reached eventually. Indeed, if no basis of U is ever
reached, the process creates arbitrarily large independent sets in V. But this is impossible by the
fundamental theorem because V is finite dimensional and so is spanned by a finite set of vectors.

[]

Theorem 6.4.1

Let V be a finite dimensional vector space spanned by m vectors.

1. V has a finite basis, and dimV < m.

2. Every independent set of vectors in V can be enlarged to a basis of V by adding
vectors from any fixed basis of V.

3. If U is a subspace of V, then

a. U is finite dimensional and dim U < dim V.
b. If dmU = dimV then U =V.

Proof.

1. If V. = {0}, then V has an empty basis and dim V =0 < m. Otherwise, let v # 0 be a vector
in V. Then {v} is independent, so (1) follows from Lemma 6.4.2 with U =V.

2. We refine the proof of Lemma 6.4.2. Fix a basis B of V and let I be an independent subset
of V. If span I =V then I is already a basis of V. If spanl# V, then B is not contained in /
(because B spans V). Hence choose by € B such that by ¢ span I. Hence the set IU{b;} is
independent by Lemma 6.4.1. If span (IU{b;}) =V we are done; otherwise a similar argument
shows that (IU{bj, by}) is independent for some by € B. Continue this process. As in the
proof of Lemma 6.4.2, a basis of V will be reached eventually.

3. a. Thisis clear if U = {0}. Otherwise, let u# 0 in U. Then {u} can be enlarged to a finite
basis B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent
in V, so dim U < dim V by the fundamental theorem.

b. This is clear if U = {0} because V has a basis; otherwise, it follows from (2). O

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis
(possibly empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set D = { [ } (1) } , [ (1) i } , [ } (1) } } to a basis of M»,.

. . _fJ10 0 1 00 00
Sohltmn.ThestandardbasmofMgzls{[0 0]’ {0 O}’ {1 0}’ [O 1}}’80

including one of these in D will produce a basis by Theorem 6.4.1. In fact including any of
these matrices in D produces an independent set (verify), and hence a basis by
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Theorem 6.4.4. Of course these vectors are not the only possibilities, for example, including

1 1
{ 0 1 } works as well.

Example 6.4.2

Find a basis of P3 containing the independent set {1 +x, 1+x?}.

Solution. The standard basis of P3 is {1, x, X2, x3}, so including two of these vectors will
do. If we use 1 and x3, the result is {1, 14x, 14+x?, x*}. This is independent because the
polynomials have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of
course, including {1, x} or {1, x>} would not work!

Example 6.4.3

Show that the space P of all polynomials is infinite dimensional.

Solution. For each n > 1, P has a subspace P, of dimension n+ 1. Suppose P is finite
dimensional, say dim P =m. Then dim P, < dim P by Theorem 6.4.1, that is n+1 < m.
This is impossible since n is arbitrary, so P must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If c1, ¢, ..., ¢ are independent columns in R”, show that they are the first k columns in
some invertible n X n matrix.

Solution. By Theorem 6.4.1, expand {cj, ¢, ..., ¢t} to a basis
{c1, €2, ..+, Ck» Ckt1y «-o Cu}p Of R™. Then the matrix A = [ Cl C ... C Ciyl --- Cy }
with this basis as its columns is an n X n matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2
Let U and W be subspaces of the finite dimensional space V.

1. IfU CW, then dim U < dim W.

2. If UCW and dimU = dim W, then U =W.

Proof. Since W is finite dimensional, (1) follows by taking V =W in part (3) of Theorem 6.4.1.
Now assume dim U = dim W = n, and let B be a basis of U. Then B is an independent set in W.
If U# W, then span B# W, so B can be extended to an independent set of n+ 1 vectors in W by
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Lemma 6.4.1. This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by
dim W = n vectors. Hence U =W, proving (2). ]

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2.13 for R? and R3?; here is
another example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in P, that have a as a root:

W ={p(x) | p(x) € P, and p(a) = 0}
Show that {(x—a), (x—a)?, ..., (x—a)"} is a basis of W.

Solution. Observe first that (x—a), (x—a)?, ..., (x—a)" are members of W, and that they
are independent because they have distinct degrees (Example 6.3.4). Write

U=span{(x—a), (x—a)?, ..., (x—a)"}

Then we have U CW CP,,, dimU =n, and dim P, =n+1. Hence n < dimW <n+1 by
Theorem 6.4.2. Since dim W is an integer, we must have dim W =n or dimW =n+ 1. But
then W =U or W = P,,, again by Theorem 6.4.2. Because W # P,,, it follows that W = U, as
required.

A set of vectors is called dependent if it is not independent, that is if some nontrivial linear
combination vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set D={vy, va, ..., v} of vectors in a vector space V is dependent if and only if some
vector in D is a linear combination of the others.

Proof. Let v, (say) be a linear combination of the rest: v, =s;vy+s3v3+---+s;vi. Then
S1V]+ (—1)V2 +s3v3+--+ 5, v =0

is a nontrivial linear combination that vanishes, so D is dependent. Conversely, if D is dependent,
let tyvy +6vy+ -+ 1;vp = 0 where some coefficient is nonzero. If (say) t; # 0, then v, = —%vl —

t 1, . . . .
éV3 — = évk is a linear combination of the others. []

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows
that spanning sets can be cut down to a basis.

Theorem 6.4.3

Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by
deleting vectors) to a basis of V.
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Proof. Since V is finite dimensional, it has a finite spanning set S. Among all spanning sets
contained in §, choose Sy containing the smallest number of vectors. It suffices to show that Sy
is independent (then Sy is a basis, proving the theorem). Suppose, on the contrary, that Sy is
not independent. Then, by Lemma 6.4.3, some vector u € Sy is a linear combination of the set
S1 =S\ {u} of vectors in Sy other than u. It follows that span Sy = span Sj, that is, V = span S;.
But S has fewer elements than Sy so this contradicts the choice of Sy. Hence Sy is independent
after all. ]

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for
the case V =R".

Example 6.4.6

Find a basis of P3 in the spanning set S = {1, x4x%, 2x—3x2, 143x—2x2, x3}.

Solution. Since dim P3 =4, we must eliminate one polynomial from S. It cannot be x°
because the span of the rest of S is contained in P,. But eliminating 1+ 3x — 2x? does leave
a basis (verify). Note that 14 3x —2x? is the sum of the first three polynomials in S.

Theorems 6.4.1 and 6.4.3 have other useful consequences.

Theorem 6.4.4

Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in'V.
Then S is independent if and only if S spans V.

Proof. Assume first that S is independent. By Theorem 6.4.1, S is contained in a basis B of V.
Hence |S| =n =|B| so, since S C B, it follows that § = B. In particular S spans V.

Conversely, assume that S spans V, so S contains a basis B by Theorem 6.4.3. Again |S| =n = |B|
S0, since S D B, it follows that S = B. Hence S is independent.

One of independence or spanning is often easier to establish than the other when showing that a set
of vectors is a basis. For example if V = R" it is easy to check whether a subset S of R” is orthogonal
(hence independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set S = {po(x), p1(x), ..., pa(x)} of polynomials in P,. If deg py(x) =k for
each k, show that S is a basis of P,,.

Solution. The set § is independent—the degrees are distinct—see Example 6.3.4. Hence S
is a basis of P, by Theorem 6.4.4 because dim P, =n+1.
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Example 6.4.8

Let V denote the space of all symmetric 2 x 2 matrices. Find a basis of V consisting of
invertible matrices.

Solution. We know that dim V =3 (Example 6.3.11), so what is needed is a set of three
invertible, symmetric matrices that (using Theorem 6.4.4) is either independent or spans V.

10 1 0 01 o . . .
The set { [ 01 } , [ 0 _1 } , [ 10 } } is independent (verify) and so is a basis of the

required type.

Example 6.4.9

Let A be any n x n matrix. Show that there exist n* +1 scalars ag, ay, as, ..., a,» not all
zero, such that

apl +a1A + a2A2 —+ .- —l—anzAnz =0
where I denotes the n x n identity matrix.
Solution. The space My, of all n x n matrices has dimension n* by Example 6.3.7. Hence

the n% 4 1 matrices I, A, A2, ..., A" cannot be independent by Theorem 6.4.4, so a
nontrivial linear combination vanishes. This is the desired conclusion.

The result in Example 6.4.9 can be written as f(A) = 0 where f(x) = ag+ ax+axx* + - -- —l—anzx”2.
In other words, A satisfies a nonzero polynomial f(x) of degree at most n?. In fact we know that A
satisfies a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see Theorem ?77),
but the brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

[f U and W are subspaces of a vector space V, there are two related subspaces that are of interest,
their sum U + W and their intersection U "W, defined by

U+W={u+w|ueU and we W}
UNnW={veV|veUandveW}

It is routine to verify that these are indeed subspaces of V., that U "W is contained in both U and
W, and that U +W contains both U and W. We conclude this section with a useful fact about the
dimensions of these spaces. The proof is a good illustration of how the theorems in this section are
used.

Theorem 6.4.5

Suppose that U and W are finite dimensional subspaces of a vector space V. Then U +W is
finite dimensional and

dim (U +W) = dim U + dim W — dim (U NW).

Proof. Since UNW C U, it has a finite basis, say {x1, ..., X4}. Extend it to a basis {x, ..., x4, uy, ...

of U by Theorem 6.4.1. Similarly extend {xi, ..., x4} to a basis {x1, ..., X4, W1, ..., W,} of W.

B um}
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Then
U+W =span{xy, ..., Xg, Uy, ..., Wy, Wi, ..., Wp}
as the reader can verify, so U + W is finite dimensional. For the rest, it suffices to show that
{x1, ..., Xg, w1, ..., Wy, Wi, ..., W,} is independent (verify). Suppose that
nxi+c At rgXg+siug oo+ Sy w4 +1,w, =0 (6.1)

where the r;, s, and ;. are scalars. Then
X+ rgXg s Sy = — (W W)

is in U (left side) and also in W (right side), and so is in UNW. Hence (t;w+---+1,W)) is a linear

combination of {xi, ..., x4}, s01; =--- =1, =0, because {x1, ..., X4, Wy, ..., W, } is independent.
Similarly, sy = -+ = s, =0, so (6.1) becomes rix| +---+rgxy =0. It follows that rj =--- =r; =0,
as required. ]

Theorem 6.4.5 is particularly interesting if UNW = {0}. Then there are no vectors x; in the
above proof, and the argument shows that if {uy, ..., w,} and {wy, ..., w,} are bases of U and
W respectively, then {uy, ..., Wy, Wi, ..., W,} is a basis of U + W. In this case U +W is said to
be a direct sum (written U & W); we return to this in Chapter ?7.

Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that b. V=P, {x2 +3, x+2, ¥ —2x—1, x* +x}
includes the vector v.

a. V=R3} v=(1, -1, 1)

b. V=R} v=(0,1,1) b. Any three except {x*+3, x+2, x> —2x— 1}
c. V=M, v= [ 1 i } Exercise 6.4.3 In each case, find a basis of V con-
taining v and w.

_ 2
d V=P, v=x—x+1 a. V=R v=(1, =1, 1, =1),w=(0, 1, 0, 1)

b. V=R v=(0,0,1,1),w=(1, 1, 1, 1)

1 0 0 1
c.V—Mzz,V—[O 1],w-[1 O}

=

{(0, 1, 1), (1, 0, 0), (0, 1, 0)}
(x> —x+1, 1, x} d V=P3, v=x>+1, w=x>+x

&

Exercise 6.4.2 In each case, find a basis for V
among the given vectors.

b. Add (0, 1, 0, 0) and (0, O, 1, 0).
. Add 1 and .

a. V=R,
{(1, 1, —1), (2,0, 1), (-1, 1, =2), (1, 2, 1)}

o,



Exercise 6.4.4

a. If z is not a real number, show that {z, z>} is a
basis of the real vector space C of all complex
numbers.

b. If z is neither real nor pure imaginary, show
that {z, Z} is a basis of C.

b. If z=a+bi,thena#0and b#0. If rz+s57=0,
then (r+s)a=0 and (r —s)b =0. This means
that r+s=0=r—s, so r=s5=0. Thus {z, z}
is independent; it is a basis because dim C = 2.

Exercise 6.4.5 In each case use Theorem 6.4.4 to
a. V= Mzz;
0 1 0 0

decide if S is a basis of V.
1 1 00
s={{a ] [ Y ]

b. V=P3; §={2x%, 1+x, 3, I +x+x>+x°}

b. The polynomials in § have distinct degrees.

Exercise 6.4.6

a. Find a basis of My, consisting of matrices with
the property that A2 =A.

b. Find a basis of P3 consisting of polynomials
whose coefficients sum to 4. What if they sum
to 07

b. {4, 4x, 4x2, 4x3} is one such basis of P3. How-
ever, there is no basis of P3 consisting of poly-
nomials that have the property that their coef-
ficients sum to zero. For if such a basis exists,
then every polynomial in P3 would have this
property (because sums and scalar multiples
of such polynomials have the same property).

6.4. Finite Dimensional Spaces = 361

Exercise 6.4.7 If {u, v, w} is a basis of V, deter-
mine which of the following are bases.

a. {u+v, u+w, v+w}
b. {2u+v+3w, 3ut+v—w, u—4w}
c. {u, ut+v+w}

d. {u, u+w, u—w, v+w}

b. Not a basis.

d. Not a basis.

Exercise 6.4.8

a. Can two vectors span R3? Can they be lin-
early independent? Explain.

b. Can four vectors span R3*? Can they be lin-
early independent? Explain.

b. Yes; no.

Exercise 6.4.9 Show that any nonzero vector in a
finite dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that
det A =0 if and only if some row is a linear combi-
nation of the others.
det A =0 if and only if A is not invertible; if and only
if the rows of A are dependent (Theorem 5.2.3); if
and only if some row is a linear combination of the
others (Lemma 6.4.2).

Exercise 6.4.11 Let D, I, and X denote finite,
nonempty sets of vectors in a vector space V. As-
sume that D is dependent and [ is independent. In
each case answer yes or no, and defend your answer.

a. If X D D, must X be dependent?
b. If X € D, must X be dependent?

c. If X DI, must X be independent?

e

If X C I, must X be independent?
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b. No. {(0, 1), (1, 0)} C{(0, 1), (1, 0), (1, 1)}.
d. Yes. See Exercise 6.3.15.

Exercise 6.4.12 If U and W are subspaces of V and
dim U =2, show that either U CW or dim(UNW) <
1.

Exercise 6.4.13 Let A be a nonzero 2 x 2 matrix
and write U = {X in My, | XA = AX}. Show that
dimU > 2. [Hint: I and A are in U]

Exercise 6.4.14 If U C R? is a subspace, show that
U ={0}, U=R? or U is a line through the origin.

Exercise 6.4.15 Given vi, vz, V3, ..., Vg,
and v, let U = span{vy, wva, ..., v} and
W = span{vy, vz, ..., Vi, V} Show that
either dmW = dimU or dmW = 1+ dimU.
If veU then W =U; if v ¢ U then
{vi, V2, ..., Vi, V} is a basis of W by the inde-

pendent lemma.

Exercise 6.4.16 Suppose U is a subspace of Py,
U # {0}, and U # P;. Show that either U =R or
U =R(a+x) for some a in R.

Exercise 6.4.17 Let U be a subspace of V and
assume dimV =4 and dim U = 2. Does every basis
of V result from adding (two) vectors to some basis
of U? Defend your answer.

Exercise 6.4.18 Let U and W be subspaces of a
vector space V.

a. If dimV =3, dimU = dim W =2, and U £ W,
show that dim(UNW)=1.

b. Interpret (a.) geometrically if V = R3.

b. Two distinct planes through the origin (U and
W) meet in a line through the origin (U NW).

Exercise 6.4.19 Let U C W be subspaces of V with
dim U =k and dim W =m, where k <m. If k <l <m,
show that a subspace X exists where U CX CW and
dim X =1.

Exercise 6.4.20 Let B={vy, ..., v,} be a maxi-
mal independent set in a vector space V. That is, no
set of more than n vectors § is independent. Show
that B is a basis of V.

Exercise 6.4.21 Let B={vy, ..., v,} be a min-
imal spanning set for a vector space V. That is, V
cannot be spanned by fewer than n vectors. Show
that B is a basis of V.

Exercise 6.4.22

a. Let p(x) and g(x) lie in P and suppose that

p(1) #0, q(2) #0, and p(2) =0=g(1). Show

that {p(x), ¢q(x)} is a basis of P|. [Hint: If
rp(x) +sq(x) = 0, evaluate at x =1, x =2.]

b. Let B={po(x), p1(x), ..., pn(x)} be a set of
polynomials in P,. Assume that there exist
numbers ag, ai, ..., a, such that p;(a;) # 0 for
each i but p;(a;) =0 if i is different from ;.
Show that B is a basis of P,,.

Exercise 6.4.23 Let V be the set of all infinite
sequences (ag, aj, az, ...) of real numbers. Define
addition and scalar multiplication by

(ao, ai, ...)—l—(bo, b1, ...):(ao—i-b(), a+ by, )

and

r(ap, ai, ...) = (raog, ray, ...)

a. Show that V is a vector space.
b. Show that V is not finite dimensional.

c. [For those with some calculus.] Show that the
set of convergent sequences (that is, lim a, ex-
n—yoo

ists) is a subspace, also of infinite dimension.

b. The set {(1, 0, 0, 0, ...), (0, 1, 0, 0, 0, ...),
0,0, 1,0, 0, ...), ...} contains independent
subsets of arbitrary size.

Exercise 6.4.24 Let A be an n x n matrix of
rank r. If U ={X in M,,, | AX = 0}, show that
dim U =n(n—r). [Hint: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V.



a. Show that U+ W is a subspace of V containing

both U and W.

b. Show that span{u, w} = Ru+Rw for any vec-

tors u and w.

¢. Show that
span{uj, ..., Wy, Wi, ..., Wy}
= span{uj, ..., wy,}+ span{wy, ...

for any vectors u; in U and w; in W.
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b. Ru+Rw = {ru+sw|r, s in R} = span{u, w}

Exercise 6.4.26 If A and B are m X n matrices,
show that rank (A+B) < rank A+ rank B. [Hint: If U
and V are the column spaces of A and B, respectively,
show that the column space of A+ B is contained in
U+V and that dim(U+V) < dimU + dim V. (See
Theorem 6.4.5.)]
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