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6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence
no guarantee that one can speak at all of the dimension of V . However, Theorem 6.4.1 will show
that any space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the
following basic lemma, of interest in itself, that gives a way to enlarge a given independent set of
vectors.

Lemma 6.4.1: Independent Lemma

Let {v1, v2, . . . , vk} be an independent set of vectors in a vector space V . If u ∈V but5

u /∈ span{v1, v2, . . . , vk}, then {u, v1, v2, . . . , vk} is also independent.

Proof. Let tu+ t1v1 + t2v2 + · · ·+ tkvk = 0; we must show that all the coefficients are zero. First,
t = 0 because, otherwise, u =− t1

t v1 − t2
t v2 −·· ·− tk

t vk is in span{v1, v2, . . . , vk}, contrary to our
assumption. Hence t = 0. But then t1v1 + t2v2 + · · ·+ tkvk = 0 so the rest of the ti are zero by the
independence of {v1, v2, . . . , vk}. This is what we wanted.

0

u

v1

v2

span{v1 , v2}
x

y

z Note that the converse of Lemma 6.4.1 is also true:
if {u, v1, v2, . . . , vk} is independent, then u is not
in span{v1, v2, . . . , vk}.

As an illustration, suppose that {v1, v2} is inde-
pendent in R3. Then v1 and v2 are not parallel, so
span{v1, v2} is a plane through the origin (shaded
in the diagram). By Lemma 6.4.1, u is not in this
plane if and only if {u, v1, v2} is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called finite dimensional if it is spanned by a finite set of vectors.
Otherwise, V is called infinite dimensional.

Thus the zero vector space {0} is finite dimensional because {0} is a spanning set.

Lemma 6.4.2
Let V be a finite dimensional vector space. If U is any subspace of V , then any independent
subset of U can be enlarged to a finite basis of U .

Proof. span I =U then I is already a basis of U . If span I 6=U , choose u1 ∈U such that u1 /∈ span I.
Hence the set I∪{u1} is independent by Lemma 6.4.1. If span (I∪{u1}) =U we are done; otherwise
choose u2 ∈ U such that u2 /∈ span (I ∪{u1}). Hence I ∪{u1, u2} is independent, and the process

5If X is a set, we write a ∈ X to indicate that a is an element of the set X . If a is not an element of X , we write
a /∈ X .
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continues. We claim that a basis of U will be reached eventually. Indeed, if no basis of U is ever
reached, the process creates arbitrarily large independent sets in V . But this is impossible by the
fundamental theorem because V is finite dimensional and so is spanned by a finite set of vectors.

Theorem 6.4.1
Let V be a finite dimensional vector space spanned by m vectors.

1. V has a finite basis, and dim V ≤ m.

2. Every independent set of vectors in V can be enlarged to a basis of V by adding
vectors from any fixed basis of V .

3. If U is a subspace of V , then

a. U is finite dimensional and dim U ≤ dim V .
b. If dim U = dim V then U =V .

Proof.

1. If V = {0}, then V has an empty basis and dim V = 0 ≤ m. Otherwise, let v 6= 0 be a vector
in V . Then {v} is independent, so (1) follows from Lemma 6.4.2 with U =V .

2. We refine the proof of Lemma 6.4.2. Fix a basis B of V and let I be an independent subset
of V . If span I =V then I is already a basis of V . If span I 6=V , then B is not contained in I
(because B spans V ). Hence choose b1 ∈ B such that b1 /∈ span I. Hence the set I ∪{b1} is
independent by Lemma 6.4.1. If span (I∪{b1}) =V we are done; otherwise a similar argument
shows that (I ∪{b1, b2}) is independent for some b2 ∈ B. Continue this process. As in the
proof of Lemma 6.4.2, a basis of V will be reached eventually.

3. a. This is clear if U = {0}. Otherwise, let u 6= 0 in U . Then {u} can be enlarged to a finite
basis B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent
in V , so dim U ≤ dim V by the fundamental theorem.

b. This is clear if U = {0} because V has a basis; otherwise, it follows from (2).

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis
(possibly empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set D =

{[
1 1
1 0

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]}
to a basis of M22.

Solution. The standard basis of M22 is
{[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]}
, so

including one of these in D will produce a basis by Theorem 6.4.1. In fact including any of
these matrices in D produces an independent set (verify), and hence a basis by
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Theorem 6.4.4. Of course these vectors are not the only possibilities, for example, including[
1 1
0 1

]
works as well.

Example 6.4.2

Find a basis of P3 containing the independent set {1+ x, 1+ x2}.

Solution. The standard basis of P3 is {1, x, x2, x3}, so including two of these vectors will
do. If we use 1 and x3, the result is {1, 1+ x, 1+ x2, x3}. This is independent because the
polynomials have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of
course, including {1, x} or {1, x2} would not work!

Example 6.4.3

Show that the space P of all polynomials is infinite dimensional.

Solution. For each n ≥ 1, P has a subspace Pn of dimension n+1. Suppose P is finite
dimensional, say dim P = m. Then dim Pn ≤ dim P by Theorem 6.4.1, that is n+1 ≤ m.
This is impossible since n is arbitrary, so P must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If c1, c2, . . . , ck are independent columns in Rn, show that they are the first k columns in
some invertible n×n matrix.

Solution. By Theorem 6.4.1, expand {c1, c2, . . . , ck} to a basis
{c1, c2, . . . , ck, ck+1, . . . , cn} of Rn. Then the matrix A =

[
c1 c2 . . . ck ck+1 . . . cn

]
with this basis as its columns is an n×n matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2
Let U and W be subspaces of the finite dimensional space V .

1. If U ⊆W , then dim U ≤ dim W .

2. If U ⊆W and dim U = dim W , then U =W .

Proof. Since W is finite dimensional, (1) follows by taking V = W in part (3) of Theorem 6.4.1.
Now assume dim U = dim W = n, and let B be a basis of U . Then B is an independent set in W .
If U 6=W , then span B 6=W , so B can be extended to an independent set of n+1 vectors in W by
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Lemma 6.4.1. This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by
dim W = n vectors. Hence U =W , proving (2).

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2.13 for R2 and R3; here is
another example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in Pn that have a as a root:

W = {p(x) | p(x) ∈ Pn and p(a) = 0}

Show that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of W .

Solution. Observe first that (x−a), (x−a)2, . . . , (x−a)n are members of W , and that they
are independent because they have distinct degrees (Example 6.3.4). Write

U = span{(x−a), (x−a)2, . . . , (x−a)n}

Then we have U ⊆W ⊆ Pn, dim U = n, and dim Pn = n+1. Hence n ≤ dim W ≤ n+1 by
Theorem 6.4.2. Since dim W is an integer, we must have dim W = n or dim W = n+1. But
then W =U or W = Pn, again by Theorem 6.4.2. Because W 6= Pn, it follows that W =U , as
required.

A set of vectors is called dependent if it is not independent, that is if some nontrivial linear
combination vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set D = {v1, v2, . . . , vk} of vectors in a vector space V is dependent if and only if some
vector in D is a linear combination of the others.

Proof. Let v2 (say) be a linear combination of the rest: v2 = s1v1 + s3v3 + · · ·+ skvk. Then

s1v1 +(−1)v2 + s3v3 + · · ·+ skvk = 0

is a nontrivial linear combination that vanishes, so D is dependent. Conversely, if D is dependent,
let t1v1 + t2v2 + · · ·+ tkvk = 0 where some coefficient is nonzero. If (say) t2 6= 0, then v2 =− t1

t2
v1 −

t3
t2

v3 −·· ·− tk
t2

vk is a linear combination of the others.

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows
that spanning sets can be cut down to a basis.

Theorem 6.4.3
Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by
deleting vectors) to a basis of V .
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Proof. Since V is finite dimensional, it has a finite spanning set S. Among all spanning sets
contained in S, choose S0 containing the smallest number of vectors. It suffices to show that S0
is independent (then S0 is a basis, proving the theorem). Suppose, on the contrary, that S0 is
not independent. Then, by Lemma 6.4.3, some vector u ∈ S0 is a linear combination of the set
S1 = S0 \{u} of vectors in S0 other than u. It follows that span S0 = span S1, that is, V = span S1.
But S1 has fewer elements than S0 so this contradicts the choice of S0. Hence S0 is independent
after all.

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for
the case V = Rn.

Example 6.4.6

Find a basis of P3 in the spanning set S = {1, x+ x2, 2x−3x2, 1+3x−2x2, x3}.

Solution. Since dim P3 = 4, we must eliminate one polynomial from S. It cannot be x3

because the span of the rest of S is contained in P2. But eliminating 1+3x−2x2 does leave
a basis (verify). Note that 1+3x−2x2 is the sum of the first three polynomials in S.

Theorems 6.4.1 and 6.4.3 have other useful consequences.

Theorem 6.4.4
Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in V .
Then S is independent if and only if S spans V .

Proof. Assume first that S is independent. By Theorem 6.4.1, S is contained in a basis B of V .
Hence |S|= n = |B| so, since S ⊆ B, it follows that S = B. In particular S spans V .

Conversely, assume that S spans V , so S contains a basis B by Theorem 6.4.3. Again |S|= n = |B|
so, since S ⊇ B, it follows that S = B. Hence S is independent.

One of independence or spanning is often easier to establish than the other when showing that a set
of vectors is a basis. For example if V =Rn it is easy to check whether a subset S of Rn is orthogonal
(hence independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set S = {p0(x), p1(x), . . . , pn(x)} of polynomials in Pn. If deg pk(x) = k for
each k, show that S is a basis of Pn.

Solution. The set S is independent—the degrees are distinct—see Example 6.3.4. Hence S
is a basis of Pn by Theorem 6.4.4 because dim Pn = n+1.
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Example 6.4.8

Let V denote the space of all symmetric 2×2 matrices. Find a basis of V consisting of
invertible matrices.

Solution. We know that dim V = 3 (Example 6.3.11), so what is needed is a set of three
invertible, symmetric matrices that (using Theorem 6.4.4) is either independent or spans V .

The set
{[

1 0
0 1

]
,
[

1 0
0 −1

]
,
[

0 1
1 0

]}
is independent (verify) and so is a basis of the

required type.

Example 6.4.9

Let A be any n×n matrix. Show that there exist n2 +1 scalars a0, a1, a2, . . . , an2 not all
zero, such that

a0I +a1A+a2A2 + · · ·+an2An2
= 0

where I denotes the n×n identity matrix.

Solution. The space Mnn of all n×n matrices has dimension n2 by Example 6.3.7. Hence
the n2 +1 matrices I, A, A2, . . . , An2 cannot be independent by Theorem 6.4.4, so a
nontrivial linear combination vanishes. This is the desired conclusion.

The result in Example 6.4.9 can be written as f (A) = 0 where f (x) = a0 +a1x+a2x2 + · · ·+an2xn2 .
In other words, A satisfies a nonzero polynomial f (x) of degree at most n2. In fact we know that A
satisfies a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see Theorem ??),
but the brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

If U and W are subspaces of a vector space V , there are two related subspaces that are of interest,
their sum U +W and their intersection U ∩W , defined by

U +W = {u+w | u ∈U and w ∈W}
U ∩W = {v ∈V | v ∈U and v ∈W}

It is routine to verify that these are indeed subspaces of V , that U ∩W is contained in both U and
W , and that U +W contains both U and W . We conclude this section with a useful fact about the
dimensions of these spaces. The proof is a good illustration of how the theorems in this section are
used.

Theorem 6.4.5
Suppose that U and W are finite dimensional subspaces of a vector space V . Then U +W is
finite dimensional and

dim (U +W ) = dim U + dim W − dim (U ∩W ).

Proof. Since U∩W ⊆U , it has a finite basis, say {x1, . . . , xd}. Extend it to a basis {x1, . . . , xd , u1, . . . , um}
of U by Theorem 6.4.1. Similarly extend {x1, . . . , xd} to a basis {x1, . . . , xd , w1, . . . , wp} of W .
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Then
U +W = span{x1, . . . , xd , u1, . . . , um, w1, . . . , wp}

as the reader can verify, so U +W is finite dimensional. For the rest, it suffices to show that
{x1, . . . , xd , u1, . . . , um, w1, . . . , wp} is independent (verify). Suppose that

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum + t1w1 + · · ·+ tpwp = 0 (6.1)

where the ri, s j, and tk are scalars. Then

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum =−(t1w1 + · · ·+ tpwp)

is in U (left side) and also in W (right side), and so is in U ∩W . Hence (t1w1+ · · ·+ tpwp) is a linear
combination of {x1, . . . , xd}, so t1 = · · ·= tp = 0, because {x1, . . . , xd , w1, . . . , wp} is independent.
Similarly, s1 = · · ·= sm = 0, so (6.1) becomes r1x1 + · · ·+ rdxd = 0. It follows that r1 = · · ·= rd = 0,
as required.

Theorem 6.4.5 is particularly interesting if U ∩W = {0}. Then there are no vectors xi in the
above proof, and the argument shows that if {u1, . . . , um} and {w1, . . . , wp} are bases of U and
W respectively, then {u1, . . . , um, w1, . . . , wp} is a basis of U + W . In this case U +W is said to
be a direct sum (written U ⊕W ); we return to this in Chapter ??.

Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that
includes the vector v.

a. V = R3, v = (1, −1, 1)

b. V = R3, v = (0, 1, 1)

c. V = M22, v =

[
1 1
1 1

]
d. V = P2, v = x2 − x+1

b. {(0, 1, 1), (1, 0, 0), (0, 1, 0)}

d. {x2 − x+1, 1, x}

Exercise 6.4.2 In each case, find a basis for V
among the given vectors.

a. V = R3,
{(1, 1, −1), (2, 0, 1), (−1, 1, −2), (1, 2, 1)}

b. V = P2, {x2 +3, x+2, x2 −2x−1, x2 + x}

b. Any three except {x2 +3, x+2, x2 −2x−1}

Exercise 6.4.3 In each case, find a basis of V con-
taining v and w.

a. V = R4, v = (1, −1, 1, −1), w = (0, 1, 0, 1)

b. V = R4, v = (0, 0, 1, 1), w = (1, 1, 1, 1)

c. V = M22, v =

[
1 0
0 1

]
, w =

[
0 1
1 0

]
d. V = P3, v = x2 +1, w = x2 + x

b. Add (0, 1, 0, 0) and (0, 0, 1, 0).

d. Add 1 and x3.
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Exercise 6.4.4

a. If z is not a real number, show that {z, z2} is a
basis of the real vector space C of all complex
numbers.

b. If z is neither real nor pure imaginary, show
that {z, z} is a basis of C.

b. If z= a+bi, then a 6= 0 and b 6= 0. If rz+sz= 0,
then (r+ s)a = 0 and (r− s)b = 0. This means
that r+ s = 0 = r− s, so r = s = 0. Thus {z, z}
is independent; it is a basis because dim C= 2.

Exercise 6.4.5 In each case use Theorem 6.4.4 to
decide if S is a basis of V .

a. V = M22;

S =

{[
1 1
1 1

]
,
[

0 1
1 1

]
,
[

0 0
1 1

]
,
[

0 0
0 1

]}
b. V = P3; S = {2x2, 1+ x, 3, 1+ x+ x2 + x3}

b. The polynomials in S have distinct degrees.

Exercise 6.4.6

a. Find a basis of M22 consisting of matrices with
the property that A2 = A.

b. Find a basis of P3 consisting of polynomials
whose coefficients sum to 4. What if they sum
to 0?

b. {4, 4x, 4x2, 4x3} is one such basis of P3. How-
ever, there is no basis of P3 consisting of poly-
nomials that have the property that their coef-
ficients sum to zero. For if such a basis exists,
then every polynomial in P3 would have this
property (because sums and scalar multiples
of such polynomials have the same property).

Exercise 6.4.7 If {u, v, w} is a basis of V , deter-
mine which of the following are bases.

a. {u+v, u+w, v+w}

b. {2u+v+3w, 3u+v−w, u−4w}

c. {u, u+v+w}

d. {u, u+w, u−w, v+w}

b. Not a basis.

d. Not a basis.

Exercise 6.4.8

a. Can two vectors span R3? Can they be lin-
early independent? Explain.

b. Can four vectors span R3? Can they be lin-
early independent? Explain.

b. Yes; no.

Exercise 6.4.9 Show that any nonzero vector in a
finite dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that
det A = 0 if and only if some row is a linear combi-
nation of the others.
det A = 0 if and only if A is not invertible; if and only
if the rows of A are dependent (Theorem 5.2.3); if
and only if some row is a linear combination of the
others (Lemma 6.4.2).

Exercise 6.4.11 Let D, I, and X denote finite,
nonempty sets of vectors in a vector space V . As-
sume that D is dependent and I is independent. In
each case answer yes or no, and defend your answer.

a. If X ⊇ D, must X be dependent?

b. If X ⊆ D, must X be dependent?

c. If X ⊇ I, must X be independent?

d. If X ⊆ I, must X be independent?
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b. No. {(0, 1), (1, 0)} ⊆ {(0, 1), (1, 0), (1, 1)}.

d. Yes. See Exercise 6.3.15.

Exercise 6.4.12 If U and W are subspaces of V and
dim U = 2, show that either U ⊆W or dim (U ∩W )≤
1.

Exercise 6.4.13 Let A be a nonzero 2×2 matrix
and write U = {X in M22 | XA = AX}. Show that
dim U ≥ 2. [Hint: I and A are in U .]

Exercise 6.4.14 If U ⊆R2 is a subspace, show that
U = {0}, U = R2, or U is a line through the origin.

Exercise 6.4.15 Given v1, v2, v3, . . . , vk,
and v, let U = span{v1, v2, . . . , vk} and
W = span{v1, v2, . . . , vk, v}. Show that
either dim W = dim U or dim W = 1 + dim U .

If v ∈ U then W = U ; if v /∈ U then
{v1, v2, . . . , vk, v} is a basis of W by the inde-
pendent lemma.

Exercise 6.4.16 Suppose U is a subspace of P1,
U 6= {0}, and U 6= P1. Show that either U = R or
U = R(a+ x) for some a in R.

Exercise 6.4.17 Let U be a subspace of V and
assume dim V = 4 and dim U = 2. Does every basis
of V result from adding (two) vectors to some basis
of U? Defend your answer.

Exercise 6.4.18 Let U and W be subspaces of a
vector space V .

a. If dim V = 3, dim U = dim W = 2, and U 6=W ,
show that dim (U ∩W ) = 1.

b. Interpret (a.) geometrically if V = R3.

b. Two distinct planes through the origin (U and
W ) meet in a line through the origin (U ∩W ).

Exercise 6.4.19 Let U ⊆W be subspaces of V with
dim U = k and dim W = m, where k < m. If k < l < m,
show that a subspace X exists where U ⊆ X ⊆W and
dim X = l.

Exercise 6.4.20 Let B = {v1, . . . , vn} be a maxi-
mal independent set in a vector space V . That is, no
set of more than n vectors S is independent. Show
that B is a basis of V .

Exercise 6.4.21 Let B = {v1, . . . , vn} be a min-
imal spanning set for a vector space V . That is, V
cannot be spanned by fewer than n vectors. Show
that B is a basis of V .

Exercise 6.4.22

a. Let p(x) and q(x) lie in P1 and suppose that
p(1) 6= 0, q(2) 6= 0, and p(2) = 0 = q(1). Show
that {p(x), q(x)} is a basis of P1. [Hint: If
rp(x)+ sq(x) = 0, evaluate at x = 1, x = 2.]

b. Let B = {p0(x), p1(x), . . . , pn(x)} be a set of
polynomials in Pn. Assume that there exist
numbers a0, a1, . . . , an such that pi(ai) 6= 0 for
each i but pi(a j) = 0 if i is different from j.
Show that B is a basis of Pn.

Exercise 6.4.23 Let V be the set of all infinite
sequences (a0, a1, a2, . . .) of real numbers. Define
addition and scalar multiplication by

(a0, a1, . . .)+(b0, b1, . . .) = (a0 +b0, a1 +b1, . . .)

and
r(a0, a1, . . .) = (ra0, ra1, . . .)

a. Show that V is a vector space.

b. Show that V is not finite dimensional.

c. [For those with some calculus.] Show that the
set of convergent sequences (that is, lim

n→∞
an ex-

ists) is a subspace, also of infinite dimension.

b. The set {(1, 0, 0, 0, . . .), (0, 1, 0, 0, 0, . . .),
(0, 0, 1, 0, 0, . . .), . . .} contains independent
subsets of arbitrary size.

Exercise 6.4.24 Let A be an n × n matrix of
rank r. If U = {X in Mnn | AX = 0}, show that
dim U = n(n− r). [Hint: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V .
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a. Show that U +W is a subspace of V containing
both U and W .

b. Show that span{u, w}=Ru+Rw for any vec-
tors u and w.

c. Show that

span{u1, . . . , um, w1, . . . , wn}
= span{u1, . . . , um}+ span{w1, . . . , wn}

for any vectors ui in U and w j in W .

b. Ru+Rw= {ru+sw | r, s in R}= span{u, w}

Exercise 6.4.26 If A and B are m× n matrices,
show that rank (A+B)≤ rank A+ rank B. [Hint: If U
and V are the column spaces of A and B, respectively,
show that the column space of A+B is contained in
U +V and that dim (U +V ) ≤ dim U + dim V . (See
Theorem 6.4.5.)]
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